Cleaning Data in R
Learn to clean data as quickly and accurately as possible to help your business move from raw data to awesome insights.
Overcome Common Data Problems Like Removing Duplicates in R
It’s commonly said that data scientists spend 80% of their time cleaning and manipulating data and only 20% of their time analyzing it. The time spent cleaning is vital since analyzing dirty data can lead you to draw inaccurate conclusions.
In this course, you’ll learn a variety of techniques to help you clean dirty data using R. You’ll start by converting data types, applying range constraints, and dealing with full and partial duplicates to avoid double-counting.
Delve into Advanced Data Challenges
Once you’ve practiced working on common data issues, you’ll move on to more advanced challenges such as ensuring consistency in measurements and dealing with missing data. After every new concept, you’ll have the chance to complete a hands-on exercise to cement your knowledge and build your experience.
Learn to Use Record Linkage During Data Cleaning
Record Linkage is used to merge datasets together when the values have issues such as typos or different spellings. You’ll explore this useful technique in the final chapter and practice the application by using it to join two restaurant review datasets together into a single dataset.
There are no reviews yet.