Unsupervised Learning in R
This course provides an intro to clustering and dimensionality reduction in R from a machine learning perspective.
Many times in machine learning, the goal is to find patterns in data without trying to make predictions. This is called unsupervised learning. One common use case of unsupervised learning is grouping consumers based on demographics and purchasing history to deploy targeted marketing campaigns. Another example is wanting to describe the unmeasured factors that most influence crime differences between cities. This course provides a basic introduction to clustering and dimensionality reduction in R from a machine learning perspective, so that you can get from data to insights as quickly as possible.
There are no reviews yet.