Differential Expression Analysis with limma in R
Learn to use the Bioconductor package limma for differential gene expression analysis.
Functional genomic technologies like microarrays, sequencing, and mass spectrometry enable scientists to gather unbiased measurements of gene expression levels on a genome-wide scale. Whether you are generating your own data or want to explore the large number of publicly available data sets, you will first need to learn how to analyze these types of experiments. In this course, you will be taught how to use the versatile R/Bioconductor package limma to perform a differential expression analysis on the most common experimental designs. Furthermore, you will learn how to pre-process the data, identify and correct for batch effects, visually assess the results, and perform enrichment testing. After completing this course, you will have general analysis strategies for gaining insight from any functional genomics study.
There are no reviews yet.