UCSanDiegoX: Introduction to Genomic Data Science
Join us on the frontier of bioinformatics and learn how to look for hidden messages in DNA without ever needing to put on a lab coat.
About this course
In the first half of this course, we’ll investigate DNA replication, and ask the question, where in the genome does DNA replication begin? You will learn how to answer this question for many bacteria using straightforward algorithms to look for hidden messages in the genome.
In the second half of the course, we’ll examine a different biological question, and ask which DNA patterns play the role of molecular clocks. The cells in your body manage to maintain a circadian rhythm, but how is this achieved on the level of DNA? Once again, we will see that by knowing which hidden messages to look for, we can start to understand the amazingly complex language of DNA. Perhaps surprisingly, we will apply randomized algorithms to solve problems.
Finally, you will get your hands dirty and apply existing software tools to find recurring biological motifs within genes that are responsible for helping Mycobacterium tuberculosis go “dormant” within a host for many years before causing an active infection.
This course begins a series of classes illustrating the power of computing in modern biology.
At a Glance:
Institution: UCSanDiegoX
Subject: Computer Science
Level: Introductory
Prerequisites:
None
Language: English
Video Transcript: English
Associated skills:Data Science, Cell Biology, Circadian Rhythm, Algorithms, Biology
What You’ll Learn:
About this course
In the first half of this course, we’ll investigate DNA replication, and ask the question, where in the genome does DNA replication begin? You will learn how to answer this question for many bacteria using straightforward algorithms to look for hidden messages in the genome.
In the second half of the course, we’ll examine a different biological question, and ask which DNA patterns play the role of molecular clocks. The cells in your body manage to maintain a circadian rhythm, but how is this achieved on the level of DNA? Once again, we will see that by knowing which hidden messages to look for, we can start to understand the amazingly complex language of DNA. Perhaps surprisingly, we will apply randomized algorithms to solve problems.
Finally, you will get your hands dirty and apply existing software tools to find recurring biological motifs within genes that are responsible for helping Mycobacterium tuberculosis go “dormant” within a host for many years before causing an active infection.
This course begins a series of classes illustrating the power of computing in modern biology.
There are no reviews yet.