PurdueX: Probability: Basic Concepts & Discrete Random Variables
Learn fundamental concepts of mathematical probability to prepare for a career in the growing field of information and data science.
About this course
Our capacity to collect and store data has exponentially increased, but deriving information from data from a scientific perspective requires a foundational knowledge of probability.
Are you interested in a career in the emerging data science field, or as an actuarial scientist? Or want better to understand statistical theory and mathematical modeling?
In this statistics and data analysis course, we will provide an introduction to mathematical probability to help meet your career goals in the exciting new areas becoming known as information science.
In this course, we will first introduce basic probability concepts and rules, including Bayes theorem, probability mass functions and CDFs, joint distributions and expected values.
Then we will discuss a few important probability distribution models with discrete random variables, including Bernoulli and Binomial distributions, Geometric distribution, Negative Binomial distribution, Poisson distribution, Hypergeometric distribution and discrete uniform distribution.
To continue learning about probability, enroll in Probability: Distribution Models & Continuous Random Variables, which covers continuous distribution models, central limit theorem and more.
The Center for Science of Information, a National Science Foundation Center, supports learners by offering free educational resources in information science.
At a Glance:
Institution: PurdueX
Subject: Computer Science
Level: Introductory
Prerequisites:
Calculus (including double integrals) & Basic Combinatorics (Lesson 1 of this course gives a combinatorics tutorial)
Language: English
Video Transcript: English
Associated skills:Data Store, Negative Binomial Distribution, Probability Theories, Bayesian Statistics, Probability Distribution, Statistics, Random Variables, Probability, Statistical Theory, Data Science, Mathematical Modeling, Data Analysis
There are no reviews yet.