×

Building Features from Numeric Data

Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare+
Duration

2h 25m

level

Beginner

Course Creator

Janani Ravi

Last Updated

08-Apr-19

This course exhaustively covers data preprocessing techniques and transforms available in scikit-learn, allowing the construction of highly optimized features that are scaled, normalized and transformed in mathematically sound ways to fully harness the power of machine learning techniques.

Add your review

The quality of preprocessing that numeric data is subjected to is an important determinant of the results of machine learning models built using that data. With smart, optimized data pre-processing, you can significantly speed up model training and validation, saving both time and money, as well as greatly improve model performance in prediction. In this course, Building Features from Numeric Data, you will gain the ability to design and implement effective, mathematically sound data pre-processing pipelines. First, you will learn the importance of normalization, standardization and scaling, and understand the intuition and mechanics of tweaking the central tendency as well as dispersion of a data feature. Next, you will discover how to identify and deal with outliers and possibly anomalous data. You will then learn important techniques for scaling and normalization. Such techniques, notably normalization using the L1-norm, L2-norm and Max norm, seek to transform feature vectors to have uniform magnitude. Such techniques find wide usage in ML model building – for instance in computing the cosine similarity of document vectors, and in transforming images before techniques such as convolutional neural networks are applied to them. You will then move from normalization and standardization to scaling and transforming data. Such transformations include quantization as well as the construction of custom transformers for bespoke use cases. Finally, you will explore how to implement log and power transformations. You will round out the course by comparing the results of three important transformations – the Yeo-Johnson transform, the Box-Cox transform and the quantile transformation – in converting data with non-normal characteristics, such as chi-squared or lognormal data into the familiar bell curve shape that many models work best with. When you’re finished with this course, you will have the skills and knowledge of data preprocessing and transformation needed to get the best out of your machine learning models.
Author Name: Janani Ravi
Author Description:
Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework. After spending years working in tech in the Bay Area, New York, and Singapore at companies such as Microsoft, Google, and Flipkart, Janani finally decided to combine her love for technology with her passion for teaching. She is now the co-founder of Loonycorn, a content studio focused on providing … more

Table of Contents

  • Course Overview
    1min
  • Using Numeric Data in Machine Learning Algorithms
    54mins
  • Building Features Using Normalization
    34mins
  • Building Features Using Scaling and Transformations
    54mins

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Building Features from Numeric Data”

Your email address will not be published. Required fields are marked *

Building Features from Numeric Data
Building Features from Numeric Data
Edcroma
Logo
Compare items
  • Total (0)
Compare
0
https://login.stikeselisabethmedan.ac.id/produtcs/
https://hakim.pa-bangil.go.id/
https://lowongan.mpi-indonesia.co.id/toto-slot/
https://cctv.sikkakab.go.id/
https://hakim.pa-bangil.go.id/products/
https://penerimaan.uinbanten.ac.id/
https://ssip.undar.ac.id/
https://putusan.pta-jakarta.go.id/
https://tekno88s.com/
https://majalah4dl.com/
https://nana16.shop/
https://thamuz12.shop/
https://dprd.sumbatimurkab.go.id/slot777/
https://dprd.sumbatimurkab.go.id/
https://cctv.sikkakab.go.id/slot-777/
https://hakim.pa-kuningan.go.id/
https://hakim.pa-kuningan.go.id/slot-gacor/
https://thamuz11.shop/
https://thamuz15.shop/
https://thamuz14.shop/
https://ppdb.smtimakassar.sch.id/
https://ppdb.smtimakassar.sch.id/slot-gacor/
slot777
slot dana
majalah4d
slot thailand
slot dana
rtp slot
toto slot
slot toto
toto4d
slot gacor
slot toto
toto slot
toto4d
slot gacor
tekno88
https://lowongan.mpi-indonesia.co.id/
https://thamuz13.shop/
https://www.alpha13.shop/
https://perpustakaan.smkpgri1mejayan.sch.id/
https://perpustakaan.smkpgri1mejayan.sch.id/toto-slot/
https://nana44.shop/
https://sadps.pa-negara.go.id/
https://sadps.pa-negara.go.id/slot-777/
https://peng.pn-baturaja.go.id/
https://portalkan.undar.ac.id/
https://portalkan.undar.ac.id/toto-slot/
https://penerimaan.ieu.ac.id/
https://sid.stikesbcm.ac.id/