×

Classification with PyTorch

Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare+
Duration

4 hours

level

Beginner

Rating

4.6

Review

56 Reviews

Enrolled

549 Enrolled

Dive into classification techniques with PyTorch. Learn how to build and train machine learning models for classifying data into categories with hands-on projects using neural networks.

Add your review

At a Glance

Designed for students and enthusiasts, this course equips you with the knowledge and practical skills to build powerful and accurate classification models using PyTorch. It offers a hands-on learning experience, allowing you to apply your knowledge through coding exercises and lessons so by the end of the course, you will possess the skills to build, train, and evaluate classification models using PyTorch. “Classification with PyTorch” is a part of a PyTorch Learning Path, check Prerequisites.

Throughout the course, students will learn how to construct linear models and implement logistic regression algorithms using PyTorch. They will gain proficiency in making predictions using logistic regression models and understanding the underlying probabilistic interpretation. Students will also delve into Bernoulli distribution maximum likelihood estimation and logistic regression cross-entropy, enabling them to effectively estimate model parameters and optimize them for classification tasks. Furthermore, the course covers the application of the softmax function for multiclass classification, providing students with the necessary knowledge to perform accurate and reliable multiclass classification using PyTorch.

Syllabus 

In this course we will learn about:
  1. Linear Classifier and Logistic Regression
  2. Logistic Regression Prediction
  3. Bernoulli Distribution Maximum Likelihood Estimation
  4. Logistic Regression Cross Entropy
  5. Softmax Function
  6. Softmax PyTorch

Prerequisites

Note: this course is a part of PyTorch Learning Path and the following is required :

  1. Completion of PyTorch: Tensor, Dataset and Data Augmentation course
  2. Completion of Linear Regression with PyTorch course
or 

Good understanding of PyTorch Tensors, DataSets and Linear Regression

Skills Prior to Taking this Course

  • Basic knowledge of Python programming language.
  • Basic knowledge of PyTorch Framework
  • Familiarity with fundamental concepts of machine learning and deep learning is beneficial but not mandatory.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Classification with PyTorch”

Your email address will not be published. Required fields are marked *

Classification with PyTorch
Classification with PyTorch
Nejlepší tipy pro vaši kuchyň a zahradu - objevte nové recepty, zahradnické triky a užitečné články pro zdravý životní styl! Nejzdravější mouka: Tajemství zdravých střev a lepší výživy Jak získat kvetoucí orchidei znovu pomocí jednoduchého Jak udržet nohy v teple během zimy: praktické Jak efektivně vyčistit pračku: jednoduchý Jak snadno naořídit nože v mlýnku na maso: Jak často byste měli měnit ložní prádlo: základ pro zdravý Káva s muškátovými ořechy: Tajemství hubnutí Kontroverzní seznam nezdravých potravin: Británie vs. Jak odstranit plíseň ze spár v koupelně: jednoduchý Hazení toaletního papíru do octa: Chytrý trik pro úklid Tipy a triky pro vaši každodenní kuchyni, zahradní poradna a užitečné články o pěstování zeleniny - vše na jednom místě. Objevte nejlepší způsoby, jak vylepšit svůj životní styl a získat nové nápady pro vaření a péči o zahradu.
Edcroma
Logo
Compare items
  • Total (0)
Compare
0
https://login.stikeselisabethmedan.ac.id/produtcs/
https://hakim.pa-bangil.go.id/
https://lowongan.mpi-indonesia.co.id/toto-slot/
https://cctv.sikkakab.go.id/
https://hakim.pa-bangil.go.id/products/
https://penerimaan.uinbanten.ac.id/
https://ssip.undar.ac.id/
https://putusan.pta-jakarta.go.id/
https://tekno88s.com/
https://majalah4dl.com/
https://nana16.shop/
https://thamuz12.shop/
https://dprd.sumbatimurkab.go.id/slot777/
https://dprd.sumbatimurkab.go.id/
https://cctv.sikkakab.go.id/slot-777/
https://hakim.pa-kuningan.go.id/
https://hakim.pa-kuningan.go.id/slot-gacor/
https://thamuz11.shop/
https://thamuz15.shop/
https://thamuz14.shop/
https://ppdb.smtimakassar.sch.id/
https://ppdb.smtimakassar.sch.id/slot-gacor/
slot777
slot dana
majalah4d
slot thailand
slot dana
rtp slot
toto slot
slot toto
toto4d
slot gacor
slot toto
toto slot
toto4d
slot gacor
tekno88
https://lowongan.mpi-indonesia.co.id/
https://thamuz13.shop/
https://www.alpha13.shop/
https://perpustakaan.smkpgri1mejayan.sch.id/
https://perpustakaan.smkpgri1mejayan.sch.id/toto-slot/
https://nana44.shop/
https://sadps.pa-negara.go.id/
https://sadps.pa-negara.go.id/slot-777/
https://peng.pn-baturaja.go.id/
https://portalkan.undar.ac.id/
https://portalkan.undar.ac.id/toto-slot/
https://penerimaan.ieu.ac.id/
https://sid.stikesbcm.ac.id/