×

ArmEducationX: Machine Learning at the Edge on Arm: A Practical Introduction

Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare+
Rating

4.6 stars

Duration

6 weeks

Pacing

Self-paced

Pricing

Free

ArmEducationX: Machine Learning at the Edge on Arm: A Practical Introduction
Category:

****This course will provide you with the hands-on experience you’ll need to create innovative machine learning applications using ubiquitous Arm-based microcontrollers.

Add your review

About this course

The age of machine learning has arrived! Arm technology is powering a new generation of connected devices with sophisticated sensors that can collect a vast range of environmental, spatial and audio/visual data. Typically this data is processed in the cloud using advanced machine learning tools that are enabling new applications reshaping the way we work, travel, live and play.
To improve efficiency and performance, developers are now looking to analyse this data directly on the source device – usually a microcontroller (we call this ‘the Edge’). But with this approach comes the challenge of implementing machine learning on devices that have constrained computing resources.
This is where our course can help!
By enrolling in Machine Learning at th e Edge on Arm: A Practical Introduction you’ll learn how to train machine learning models and implement them on industry relevant Arm-based microcontrollers.
We’ll start your learning journey by taking you through the basics of artificial intelligence , machine learning and machine learning at the edge , and illustrate why businesses now need this technology to be available on connected devices. We’ll then introduce you to the concept of datasets and how to train algorithms using tools like Anaconda and Python. We’ll then go on to explore advanced topics in machine learning such as artificial neural networks and computer vision.
Along the way, our practical lab exercises will show you how you can address real-world design problems in deploying machine learning applications, such as speech and pattern recognition, as well as image processing, using actual sensor data obtained from the microcontroller. We’ll also introduce you to the open source TensorFlow Python library, which is useful in the training and inference of deep neural networks.
In the final module you’ll be able to apply what you’ve learned by implementing machine learning algorithms on a dataset of your choice.
The ST DISCO-L475E board used in this course can be purchased directly from our technology partner STMicroelectronics: https://www.st.com/content/st_com/en/campaigns/educationalplatforms/iot-arm-edx-edu.html
Through our vast ecosystem, Arm already powers a wide range of devices and applications that rely on machine learning at the edge. Be a part of this vibrant community of developers and start your machine learning journey by enrolling in our course today!

At a Glance:
Institution: ArmEducationX
Subject: Computer Science
Level: Intermediate
Prerequisites:
An understanding of C and Python
Associated programs:
Professional Certificate in Advanced Embedded Systems on Arm
Language: English
Video Transcript: English
Associated skills:Image Processing, Pattern Recognition, Anaconda (Software), Go (Programming Language), Python (Programming Language), Speech Recognition, Machine Learning Algorithms, Internet Of Things (IoT), TensorFlow, Computer Vision, Connected Devices, Artificial Intelligence, Artificial Neural Networks, Algorithms, Machine Learning, Innovation

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “ArmEducationX: Machine Learning at the Edge on Arm: A Practical Introduction”

Your email address will not be published. Required fields are marked *

ArmEducationX: Machine Learning at the Edge on Arm: A Practical Introduction
ArmEducationX: Machine Learning at the Edge on Arm: A Practical Introduction
Edcroma
Logo
Compare items
  • Total (0)
Compare
0
https://login.stikeselisabethmedan.ac.id/produtcs/
https://hakim.pa-bangil.go.id/
https://lowongan.mpi-indonesia.co.id/toto-slot/
https://cctv.sikkakab.go.id/
https://hakim.pa-bangil.go.id/products/
https://penerimaan.uinbanten.ac.id/
https://ssip.undar.ac.id/
https://putusan.pta-jakarta.go.id/
https://tekno88s.com/
https://majalah4dl.com/
https://nana16.shop/
https://thamuz12.shop/
https://dprd.sumbatimurkab.go.id/slot777/
https://dprd.sumbatimurkab.go.id/
https://cctv.sikkakab.go.id/slot-777/
https://hakim.pa-kuningan.go.id/
https://hakim.pa-kuningan.go.id/slot-gacor/
https://thamuz11.shop/
https://thamuz15.shop/
https://thamuz14.shop/
https://ppdb.smtimakassar.sch.id/
https://ppdb.smtimakassar.sch.id/slot-gacor/
slot777
slot dana
majalah4d
slot thailand
slot dana
rtp slot
toto slot
slot toto
toto4d
slot gacor
slot toto
toto slot
toto4d
slot gacor
tekno88
https://lowongan.mpi-indonesia.co.id/
https://thamuz13.shop/
https://www.alpha13.shop/
https://perpustakaan.smkpgri1mejayan.sch.id/
https://perpustakaan.smkpgri1mejayan.sch.id/toto-slot/
https://nana44.shop/
https://sadps.pa-negara.go.id/
https://sadps.pa-negara.go.id/slot-777/
https://peng.pn-baturaja.go.id/
https://portalkan.undar.ac.id/
https://portalkan.undar.ac.id/toto-slot/
https://penerimaan.ieu.ac.id/
https://sid.stikesbcm.ac.id/