×

Build a Model for Anomaly Detection in Time Series Data

Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare+
Duration

1h 13m

level

Advanced

Course Creator

Pratheerth Padman

Last Updated

22-Jul-22

This course will teach you techniques to build a model for anomaly detection on your own time series dataset.

Add your review

In the real world, time series data is one of the most used and researched types of data, and anomaly detection in it has innumerable uses ranging from detecting fraud transactions, uncovering fraudulent insurance claims, and even detecting critical equipment failures. In this course, Build a Model for Anomaly Detection in Time Series Data, you’ll learn different techniques to build a model for anomaly detection on your very own time series dataset. First, you’ll be introduced to time series data and its different components, what anomaly detection means when it pertains to a time series dataset, and its importance. Next, you’ll discover different techniques with which to build models that detect anomalies in time series datasets. Finally, you’ll learn how to deal with the anomalies that you previously detected in your dataset. When you’re finished with this course, you’ll have the skills and knowledge needed to explore, clean, prepare, and detect anomalies on your own time series dataset.
Author Name: Pratheerth Padman
Author Description:
Pratheerth is a Data Scientist who has entered the field after an eclectic mix of educational and work experiences. He has a Bachelor’s in Engineering in Mechatronics from India, Masters in Engineering Management from Australia and then a couple of years of work experience as a Production Engineer in the Middle East. Then when the A.I bug bit him, he dropped everything to dedicate his life to the field. He is currently working on mentoring, course creation and freelancing as a Data Scientist.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Build a Model for Anomaly Detection in Time Series Data”

Your email address will not be published. Required fields are marked *

Build a Model for Anomaly Detection in Time Series Data
Build a Model for Anomaly Detection in Time Series Data
Edcroma
Logo
Compare items
  • Total (0)
Compare
0
https://login.stikeselisabethmedan.ac.id/produtcs/
https://hakim.pa-bangil.go.id/
https://lowongan.mpi-indonesia.co.id/toto-slot/
https://cctv.sikkakab.go.id/
https://hakim.pa-bangil.go.id/products/
https://penerimaan.uinbanten.ac.id/
https://ssip.undar.ac.id/
https://putusan.pta-jakarta.go.id/
https://tekno88s.com/
https://majalah4dl.com/
https://nana16.shop/
https://thamuz12.shop/
https://dprd.sumbatimurkab.go.id/slot777/
https://dprd.sumbatimurkab.go.id/
https://cctv.sikkakab.go.id/slot-777/
https://hakim.pa-kuningan.go.id/
https://hakim.pa-kuningan.go.id/slot-gacor/
https://thamuz11.shop/
https://thamuz15.shop/
https://thamuz14.shop/
https://ppdb.smtimakassar.sch.id/
https://ppdb.smtimakassar.sch.id/slot-gacor/
slot777
slot dana
majalah4d
slot thailand
slot dana
rtp slot
toto slot
slot toto
toto4d
slot gacor
slot toto
toto slot
toto4d
slot gacor
tekno88
https://lowongan.mpi-indonesia.co.id/
https://thamuz13.shop/
https://www.alpha13.shop/
https://perpustakaan.smkpgri1mejayan.sch.id/
https://perpustakaan.smkpgri1mejayan.sch.id/toto-slot/
https://nana44.shop/
https://sadps.pa-negara.go.id/
https://sadps.pa-negara.go.id/slot-777/
https://peng.pn-baturaja.go.id/
https://portalkan.undar.ac.id/
https://portalkan.undar.ac.id/toto-slot/
https://penerimaan.ieu.ac.id/
https://sid.stikesbcm.ac.id/