Deep Learning for Text with PyTorch
Discover the exciting world of Deep Learning for Text with PyTorch and unlock new possibilities in natural language processing and text generation.
Learn Text Processing Techniques
You’ll dive into the fundamental principles of text processing, learning how to preprocess and encode text data for deep learning models. You’ll explore techniques such as tokenization, stemming, lemmatization, and encoding methods like one-hot encoding, Bag-of-Words, and TF-IDF, using them with Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification.
Get Creative with Text Generation and RNNs
The journey continues as you learn how Recurrent Neural Networks (RNNs) enable text generation and explore the fascinating world of Generative Adversarial Networks (GANs) for text generation. Additionally, you’ll discover pre-trained models that can generate text with fluency and creativity.
Build Powerful Models for Text Classification
Finally, you’ll delve into advanced topics in deep learning for text, including transfer learning techniques for text classification and leveraging the power of pre-trained models. You’ll learn about Transformer architecture and the attention mechanism and understand their application in text processing.
By the end of this course, you’ll have gained practical experience and the skills to handle complex text data and build powerful deep learning models.
There are no reviews yet.