×

Great Expectations, a data validation library for Python

Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare+
level

Beginner

Rating

4.6

Review

24 Reviews

Enrolled

160 Enrolled

Learn to use Great Expectations for data validation in Python. Explore how this powerful library automates data quality checks, ensures consistency, and integrates seamlessly into data pipelines to improve the reliability of your datasets.

Add your review

At a Glance

Garbage in, garbage out but sometimes gold could be wrongly put in the garbage. When data scientists are doing projects, the dataset-machine learning model pipeline requires appropriate data formats.
But how could we check that our datasets are in good shape before our modelling? Great Expectations is the perfect tool for it.
In this project, you could learn how to do data exploration using Great Expectations. Great Expectations is a Python-based open-source library for validating, documenting, and profiling your data. It helps you to maintain data quality and improve models.

Great Expectations is a Python-based open-source library for validating, documenting, and profiling your data. It helps you to maintain data quality and improve the usage of the data used in machine learning models. Mostly, Data science and data engineering teams use Great Expectations to:
  • Test data they ingest from other teams or vendors and ensure its validity.
  • Validate data they transform as a step in their data pipeline in order to ensure the correctness of transformations.
  • Prevent data quality issues from slipping into data products.
  • Streamline knowledge capture from subject-matter experts and make implicit knowledge explicit.
  • Develop rich, shared documentation of their data.

Pip-CTA.png
16.4 KB


Here, in this project, we are going to show the basic usage of Great Expectations and apply it to an example bank churn data, modified from the one provided by Kaggle.

A Look at the Project Ahead

In this project, you could learn:
  • What to check for the dataset before conducting a machine learning model 
  • Basic of Great Expectations 
  • How to use Great Expectations to create pipelines to make use of the dataset is good for the model

What You’ll Need

This is a very simple project, beginners are welcome. We are using Python code in the Jupyter notebook in this project.
Remember that the IBM Skills Network Labs environment comes with many things pre-installed (e.g. Docker) to save you the hassle of setting everything up.

Data Preparation at Scale with the IBM Data Refinery

Great Expectations is a very useful library for casual data preparation tasks. If you are looking to improve the quality of your data at scale give the IBM Data Refinery tool a try at no charge. The data refinery tool, available with IBM Watson® Studio and IBM Watson® Knowledge Catalog, saves data preparation time by quickly transforming large amounts of raw data into consumable, high-quality information that’s ready for analytics. Interactively discover, cleanse, and transform your data with over 100 built-in operations. No coding skills are required.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Great Expectations, a data validation library for Python”

Your email address will not be published. Required fields are marked *

Great Expectations, a data validation library for Python
Great Expectations, a data validation library for Python
Edcroma
Logo
Compare items
  • Total (0)
Compare
0
https://login.stikeselisabethmedan.ac.id/produtcs/
https://hakim.pa-bangil.go.id/
https://lowongan.mpi-indonesia.co.id/toto-slot/
https://cctv.sikkakab.go.id/
https://hakim.pa-bangil.go.id/products/
https://penerimaan.uinbanten.ac.id/
https://ssip.undar.ac.id/
https://putusan.pta-jakarta.go.id/
https://tekno88s.com/
https://majalah4dl.com/
https://nana16.shop/
https://thamuz12.shop/
https://dprd.sumbatimurkab.go.id/slot777/
https://dprd.sumbatimurkab.go.id/
https://cctv.sikkakab.go.id/slot-777/
https://hakim.pa-kuningan.go.id/
https://hakim.pa-kuningan.go.id/slot-gacor/
https://thamuz11.shop/
https://thamuz15.shop/
https://thamuz14.shop/
https://ppdb.smtimakassar.sch.id/
https://ppdb.smtimakassar.sch.id/slot-gacor/
slot777
slot dana
majalah4d
slot thailand
slot dana
rtp slot
toto slot
slot toto
toto4d
slot gacor
slot toto
toto slot
toto4d
slot gacor
tekno88
https://lowongan.mpi-indonesia.co.id/
https://thamuz13.shop/
https://www.alpha13.shop/
https://perpustakaan.smkpgri1mejayan.sch.id/
https://perpustakaan.smkpgri1mejayan.sch.id/toto-slot/
https://nana44.shop/
https://sadps.pa-negara.go.id/
https://sadps.pa-negara.go.id/slot-777/
https://peng.pn-baturaja.go.id/
https://portalkan.undar.ac.id/
https://portalkan.undar.ac.id/toto-slot/
https://penerimaan.ieu.ac.id/
https://sid.stikesbcm.ac.id/