HarvardX: Data Science: Linear Regression
Learn how to use R to implement linear regression, one of the most common statistical modeling approaches in data science.
About this course
Linear regression is commonly used to quantify the relationship between two or more variables. It is also used to adjust for confounding. This course, part ofourProfessional Certificate Program in Data Science, covers how to implement linear regression and adjust for confounding in practice using R.
In data science applications, it is very common to be interested in the relationship between two or more variables. The motivating case study we examine in this course relates to the data-driven approach used to construct baseball teams described in Moneyball. We will try to determine which measured outcomes best predict baseball runs by using linear regression.
We will also examine confounding, where extraneous variables affect the relationship between two or more other variables, leading to spurious associations. Linear regression is a powerful technique for removing confounders, but it is not a magical process. It is essential to understand when it is appropriate to use, and this course will teach you when to apply this technique.
At a Glance:
Institution: HarvardX
Subject: Data Analysis & Statistics
Level: Introductory
Prerequisites:
None
Language: English
Video Transcripts: اَلْعَرَبِيَّةُ, Deutsch, English, Español, Français, हिन्दी, Bahasa Indonesia, Português, Kiswahili, తెలుగు, Türkçe, 中文
Associated programs:
Professional Certificate in Data Science
Associated skills:Linear Regression, Statistical Modeling, Data Science
There are no reviews yet.