Inference for Linear Regression in R
In this course you’ll learn how to perform inference using linear models.
Previously, you learned the fundamentals of both statistical inference and linear models; now, the next step is to put them together. This course gives you a chance to think about how different samples can produce different linear models, where your goal is to understand the underlying population model. From the estimated linear model, you will learn how to create interval estimates for the effect size as well as how to determine if the effect is significant. Prediction intervals for the response variable will be contrasted with estimates of the average response. Throughout the course, you’ll gain more practice with the dplyr and ggplot2 packages, and you will learn about the broom package for tidying models; all three packages are invaluable in data science.
There are no reviews yet.