×

Intermediate Deep Learning with PyTorch

Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare+
Rating

4.4+

level

Intermediate

Duration

4 hours

video

15 videos

Module

51 exercises

Learn about fundamental deep learning architectures such as CNNs, RNNs, LSTMs, and GRUs for modeling image and sequential data.

Add your review

Learn Deep Learning
Deep learning is a rapidly evolving field of artificial intelligence that revolutionized the field of machine learning, enabling breakthroughs in areas such as computer vision, natural language processing, and speech recognition. The most recent advances in Generative AI, including image generators and conversational chatbots, have brought deep machine learning models to the public spotlight. Start learning about how deep learning works and how to train deep models yourself today.

Use PyTorch, the Most Pythonic Way to Do Deep Learning
PyTorch is a powerful and flexible deep learning framework that allows researchers and practitioners to build and train neural networks with ease. Loved by Pythonistas around the world, PyTorch offers a lot of flexibility and an intuitive way to implement deep learning concepts.

Train Robust Deep Learning Models
This course in deep learning with PyTorch is designed to provide you with a comprehensive understanding of the fundamental concepts and techniques of deep learning, and equip you with the practical skills to implement various neural network concepts. You’ll get to grips with multi-input and multi-output architectures. You’ll learn how to prevent the vanishing and exploding gradients problems using non-saturating activations, batch normalization, and proper weights initialization. You will be able to alleviate overfitting using regularization and dropout. Finally, you will know how to accelerate the training process with learning rate scheduling.

Build Image and Sequence Models
You get to know two specialized neural network architectures: Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data such as time series or text. You will understand their advantages and will be able to implement them in image classification and time series prediction tasks.

By the end of the course, you will have the knowledge and confidence to robustly train and evaluate your own deep learning models for a range of applications.

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Intermediate Deep Learning with PyTorch”

Your email address will not be published. Required fields are marked *

Intermediate Deep Learning with PyTorch
Intermediate Deep Learning with PyTorch
Edcroma
Logo
Compare items
  • Total (0)
Compare
0
https://login.stikeselisabethmedan.ac.id/produtcs/
https://hakim.pa-bangil.go.id/
https://lowongan.mpi-indonesia.co.id/toto-slot/
https://cctv.sikkakab.go.id/
https://hakim.pa-bangil.go.id/products/
https://penerimaan.uinbanten.ac.id/
https://ssip.undar.ac.id/
https://putusan.pta-jakarta.go.id/
https://tekno88s.com/
https://majalah4dl.com/
https://nana16.shop/
https://thamuz12.shop/
https://dprd.sumbatimurkab.go.id/slot777/
https://dprd.sumbatimurkab.go.id/
https://cctv.sikkakab.go.id/slot-777/
https://hakim.pa-kuningan.go.id/
https://hakim.pa-kuningan.go.id/slot-gacor/
https://thamuz11.shop/
https://thamuz15.shop/
https://thamuz14.shop/
https://ppdb.smtimakassar.sch.id/
https://ppdb.smtimakassar.sch.id/slot-gacor/
slot777
slot dana
majalah4d
slot thailand
slot dana
rtp slot
toto slot
slot toto
toto4d
slot gacor
slot toto
toto slot
toto4d
slot gacor
tekno88
https://lowongan.mpi-indonesia.co.id/
https://thamuz13.shop/
https://www.alpha13.shop/
https://perpustakaan.smkpgri1mejayan.sch.id/
https://perpustakaan.smkpgri1mejayan.sch.id/toto-slot/
https://nana44.shop/
https://sadps.pa-negara.go.id/
https://sadps.pa-negara.go.id/slot-777/
https://peng.pn-baturaja.go.id/
https://portalkan.undar.ac.id/
https://portalkan.undar.ac.id/toto-slot/
https://penerimaan.ieu.ac.id/
https://sid.stikesbcm.ac.id/