Introduction to Regression with statsmodels in Python
Predict housing prices and ad click-through rate by implementing, analyzing, and interpreting regression analysis with statsmodels in Python.
Use Python statsmodels For Linear and Logistic Regression
Linear regression and logistic regression are two of the most widely used statistical models. They act like master keys, unlocking the secrets hidden in your data. In this course, you’ll gain the skills to fit simple linear and logistic regressions.
Through hands-on exercises, you’ll explore the relationships between variables in real-world datasets, including motor insurance claims, Taiwan house prices, fish sizes, and more.
Discover How to Make Predictions and Assess Model Fit
You’ll start this 4-hour course by learning what regression is and how linear and logistic regression differ, learning how to apply both. Next, you’ll learn how to use linear regression models to make predictions on data while also understanding model objects.
As you progress, you’ll learn how to assess the fit of your model, and how to know how well your linear regression model fits. Finally, you’ll dig deeper into logistic regression models to make predictions on real data.
Learn the Basics of Python Regression Analysis
By the end of this course, you’ll know how to make predictions from your data, quantify model performance, and diagnose problems with model fit. You’ll understand how to use Python statsmodels for regression analysis and be able to apply the skills to real-life data sets.
There are no reviews yet.