Monte Carlo Simulations in Python
Learn to design and run your own Monte Carlo simulations using Python!
Simulate Outcomes with SciPy and NumPy
This practical course introduces Monte Carlo simulations and their use cases. Monte Carlo simulations are used to estimate a range of outcomes for uncertain events, and Python libraries such as SciPy and NumPy make creating your own simulations fast and easy!
Apply New Skills in a Principled Simulation
As you learn each step of creating a simulation, you’ll apply these skills by performing a principled Monte Carlo simulation on a dataset of diabetes patient outcomes and use the results of your simulation to understand how different variables impact diabetes progression.
Learn How to Assess and Improve Your Simulations
You’ll review probability distributions and understand how to choose the proper distribution for use in your simulation, and you’ll discover the importance of input correlation and model sensitivity analysis. Finally, you’ll learn to communicate your simulation findings using the popular Seaborn visualization library.
There are no reviews yet.