Sampling in Python
Learn to draw conclusions from limited data using Python and statistics. This course covers everything from random sampling to stratified and cluster sampling.
Sampling in Python is the cornerstone of inference statistics and hypothesis testing. It’s a powerful skill used in survey analysis and experimental design to draw conclusions without surveying an entire population. In this Sampling in Python course, you’ll discover when to use sampling and how to perform common types of sampling—from simple random sampling to more complex methods like stratified and cluster sampling. Using real-world datasets, including coffee ratings, Spotify songs, and employee attrition, you’ll learn to estimate population statistics and quantify uncertainty in your estimates by generating sampling distributions and bootstrap distributions.
There are no reviews yet.